首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81658篇
  免费   6600篇
  国内免费   5208篇
化学   24473篇
晶体学   1808篇
力学   3592篇
综合类   365篇
数学   19865篇
物理学   43363篇
  2022年   187篇
  2021年   362篇
  2020年   665篇
  2019年   991篇
  2018年   931篇
  2017年   632篇
  2016年   506篇
  2015年   453篇
  2014年   1159篇
  2013年   1763篇
  2012年   1227篇
  2011年   1785篇
  2010年   2378篇
  2009年   6945篇
  2008年   8033篇
  2007年   6473篇
  2006年   5891篇
  2005年   4061篇
  2004年   3837篇
  2003年   4075篇
  2002年   5286篇
  2001年   3814篇
  2000年   3573篇
  1999年   3387篇
  1998年   2803篇
  1997年   1961篇
  1996年   1769篇
  1995年   2238篇
  1994年   2163篇
  1993年   1621篇
  1992年   1126篇
  1991年   845篇
  1990年   692篇
  1989年   618篇
  1988年   577篇
  1987年   410篇
  1986年   196篇
  1985年   968篇
  1984年   634篇
  1983年   492篇
  1982年   651篇
  1981年   810篇
  1980年   742篇
  1979年   574篇
  1978年   590篇
  1977年   544篇
  1976年   544篇
  1975年   318篇
  1974年   354篇
  1973年   463篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
31.
32.
33.
34.
35.
36.
37.
Crystal structure of Fe2F5(H2O)(Htaz)(taz)(Hdma) which crystallizes in the triclinic system space group P1¯ with unit cell parameters a = 8.8392(5) Å, b = 9.1948(5) Å, c = 9.5877(5) Å, α = 82.070(3)°, β = 63.699(3)°, γ = 89.202(3)°, Z = 2, and V = 690.91(7) Å3, was synthesized under hydrothermal conditions at 393 K for 72 h, by a mixture of FeF2/FeF3, 1,2,4-triazole molecule (Htaz), and hydrofluoric acid solution (HF 4%) in dimethylformamide solvent (DMF). The main feature of this material is the coexistence of two oxidation states for iron atoms (Fe2+, Fe3+) in the unit cell, which associate by opposite fluorine corners of FeF5N and FeF2N4 octahedra, and/or triazole molecule which originates the 2D produces material. The structure determination, performed from single crystal X-ray diffraction data, lead to the R1/WR2 reliability factors 0.031/0.087. Thermal stability studies (TG/DTG/DTA) show that the decomposition provides in the temperature range 473–773 K and no mass loss was detected before 473 K. Mass spectrometry (MS) has been used. The optical absorption of the solid was measured at the corresponding λmax using UV–vis diffuse-reflectance spectrum.  相似文献   
38.
39.
40.
This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号